\{1\} Solving two equations of first degree

Find the S. S. of the following equations :-
(1) $x-y=4$
and
$3 x+2 y=7$
(2) $x-2 y=0$ and $2 x+3 y=7$
(3) $x=2$
and $y=2 x-1$
(4) $3 x-y+4=0$
and
$y=2 x+3$
(5) $y=x+4$
and
$x+y=4$
(6) the sum of two rational numbers is 63 and the difference between them is 12 . find the two numbers.
\{2 \} Solving equation of second degree
[1] Solve the following equations:-
(1) $3 x^{2}=5 x+4$
(2) $2 x^{2}-5 x+1=0$
(3) $(x-3)^{2}-5 x=0$
(4) $x^{2}+2 x+3=0$
(5) $2 x(x-5)=1$
(6) $x+\frac{4}{x}+1=0$
(7) $1-\frac{2}{x}=\frac{2}{x^{2}}$
(2) Two complementary angles, if the measure of one of them is 30° more than the measure of the other, find the measure of each of them .
$\{3\}$ Solving two equations in two variables one of first degree and the other of second degree
[1] Solve the following equations :-
(1) $y=x-3$
and $x^{2}+y^{2}=17$
(2) $x-y=1$ and $x^{2}+y^{2}=25$
(3) $x-2 y=1$ and $x^{2}-x y=0$
(4) $x+y=7$ and $x^{2}+y^{2}=25$
(5) $x+y=0$ and $2 x^{2}-y^{2}=4$
(6) $x-y=0$ and $x y=1$

With my best wishes
Mr. Nader Madany

Story problems :-

(1) If the sum of two integer numbers is 3 , and the sum of their squares is 5 . find the two numbers .
\{4\} Algebraic Fractional Functions and the operations on

them

Find n in its simplest form, showing its domain where :
(1) $n(x)=\frac{x^{2}+2 x+4}{x^{3}-8}+\frac{x^{2}+x-2}{x^{2}-4}$
(2) $n(x)=\frac{x-3}{x^{2}-7 x+12}-\frac{4}{x^{2}-4 x}$
(3) $n(x)=\frac{x+5}{x^{2}+7 x+10}-\frac{x-1}{x^{2}+5 x+6}$
(4) $n(x)=\frac{x^{2}-2 x}{x^{2}-3 x+2}-\frac{4-x^{2}}{x^{2}+x-2}$
(5) $n(x)=\frac{x^{2}-2 x}{x^{2}-4}+\frac{2 x+6}{x^{2}+5 x+6}$
(6) $n(x)=\frac{x^{2}-x}{x^{2}-1}+\frac{x+5}{x^{2}-6 x+5}$
(7) $n(x)=\frac{x^{2}+2 x+4}{x^{3}-8}-\frac{9-x^{2}}{x^{2}+x-6}$
(8) $n(x)=\frac{x^{2}-3 x}{x^{2}-9} \div \frac{2 x}{x+3}$
(9) $n(x)=\frac{x^{2}-3 x+2}{x^{2}-1} \div \frac{3 x-15}{x^{2}-4 x-5}$
(10) $n(x)=\frac{x^{3}-8}{x^{2}+x-6} \times \frac{x+3}{x^{2}+2 x+4}$
(11) $n(x)=\frac{x^{3}-8}{x^{3}-7 x^{2}+10 x} \div \frac{x^{2}+2 x+4}{3 x^{2}-15 x}$
(12) $n(x)=\frac{x^{3}-8}{x^{2}-6 x+5} \div \frac{x^{3}+2 x^{2}+4 x}{2 x^{2}+x-3}$
(13) If $n_{1}(x)=\frac{x^{2}}{x^{3}-x^{2}}, n_{2}(x)=\frac{x^{3}+x^{2}+x}{x^{4}-x}$
prove that: $n_{1}=n_{2}$
(14) Find the common domain of n_{1} and n_{2} to be equal such
that : $n_{1}(x)=\frac{x^{2}+3 x+2}{x^{2}-4}, n_{2}(x)=\frac{x^{2}-1}{x^{2}-3 x+2}$

Choose the correct answer :-

(1) the point of intersection of the two st. lines : $x=2$ and $x+y=6$ is $[(2,6),(2,4),(4,2),(6,2)]$
(2) the point of intersection of the two st. lines : $2 x-y=3$ and $2 x+y=5$ lies on the quadrant .[$\left.1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}\right]$ (3) the two st. lines $x+5 y=1$ and $x+5 y-8=0$ are [parallel, coincide, intersect, perpendicular]
(4) the two st. lines $3 x+4 y=1$ and $6 x+8 y=2$ are
[parallel, coincide, intersect, perpendicular]
(5) the S. S. of the two equations $x+y=0$ and $y-1=0$ is
$[\{(-1,1)\},\{-1,1\},[-1,1],\{(1,-1)\}]$
(6) the number of solutions of the two equations $x+y=2$ and $x+y=0$ is [0,1,2, infinite numbers]
(7) the number of solutions of the two equations $x+y=2$ and $x+y-3=0$ is [$0,1,2$, infinite numbers]
(8) if the two equations $x+4 y=7$ and $3 x+k y=21$ has infinite numbers of solutions, then $k=$ \qquad [4, 7, 12, 21]
(9) the curve of the function f such that $f(x)=x^{2}-3 x+2$ cuts x-axis at the two points $[(2,0),(3,0)$ or
$(2,0),(1,0) \operatorname{or}(-2,0),(-1,0) \operatorname{or}(2,0),(-1,0)]$
(10) the S. S. of the equation $x^{2}-4 x+4=0$ is
$[\{-2,2\},\{4,1\},\{2\}, \emptyset]$
(11) the S. S. of the equation $x^{2}+5=0$ is
$\{\{\sqrt{5},-\sqrt{5}\},\{-\sqrt{5}\},\{\sqrt{5}\}, \emptyset]$
(12) in the equation $a x^{2}+b x+c=0$ if $b^{2}-4 a c>0$, then the number of roots equals [1, 2, 0, 3]
(13) if the two equations $x+3 y=6$ and $2 x+k y=12$ have an infinite number of solutions, then $k=$ \qquad [2, 6, 3, 1]
(14) if the two equations $x+2 y=4$ and $2 x+k y=11$ represent two parallel lines , then $k=$ \qquad [4, - 4, 1, - 1]
(15) if $x=3$ belongs to the S. S. of the equation $x^{2}-a x-6=0$ then $a=$ [3, 2, 1, - 1]
(16) the ordered pairs that satisfies both of the two equations $x y=2$ and $x-y=1$ is \qquad
[(1, 2), (2, 1), (1, 1), (2, - 1)]
(17) the S. S. of the two equations $x=y$ and $x y=1$ is \qquad
$[\{(1,1)\},\{(-1,-1)\},\{(-1,1)\},\{(1,1),(-1,-1)\}]$
(18) the S. S. of the two equations $x-y=0$ and $x y=9$ is.
$[\{(0,0)\},\{(-3,-3)\},\{(3,1)\},\{(3,3),(-3,-3)\}]$
(19) one solution of the two equations $x-y=2$ and $x^{2}+y^{2}=20$ in R may be \qquad $[(-4,2),(2,-4),(3,1),(4,2)]$ (20) if $x=1, x^{2}+y^{2}=10$ then $y=\ldots \ldots . .[-3, \pm 3,2,3]$
(21) if $x=y+1,(x-y)^{2}+y=3$ then $y=\ldots[0,1,2,3]$
(22) if $a b=3, a b^{2}=12$ then $b=\ldots . . .[4,2,-2, \pm 2]$
(23) if $x^{2}-y^{2}=2(x+y)$ then $x-y=\ldots \ldots . .[2,4,6,8]$
(24) the S. S. of the two equations $x+y=0, x^{2}+y^{2}=2$ is
$[\{(0,0)\},\{(1,-1)\},\{(-1,1)\},\{(1,-1),(-1,1)\}]$
(25) if $x-3=0, y^{2}=x+6$ then $y=\ldots[9,3,-3, \pm 3]$
(26) the set of zeros of f where $f(x)=x^{2}-9$ is \qquad
$[\{3\},\{-3\},(3,-3),\{3,-3\}]$
(27) the set of zeros of f where $f(x)=x^{2}+9$ is \qquad
$[\{3\},\{3,-3\},\{-3\}, \varnothing]$
(28) the set of zeros of f where $f(x)=(x-1)^{2}(x+2)$ is \qquad
$[\{1,2\},\{1,-2\},\{-1,2\},\{-1,-2\}]$
(29) the domain of the function f where $f(x)=\frac{x(x+2)}{x^{2}-4}$ is
$[R, R-\{-2,2\}, R-\{2,0\}, R-\{2\}]$
(30) the set of zeros of f where $f(x)=\frac{x-3}{x+2}$ is
[\{0\},\{3\},\{-2\},\{3,-2\}]
(31) if the function f where $f(x)=\frac{x^{2}-9}{x}$ has a multiplicative inverse then the domain is \qquad
$[R, R-\{0,3,-3\}, R-\{0\}, R-\{0,3\}]$
(32) if $n(x)=\frac{x-1}{x-2}$, then the domain of $n^{-1}(x)$ is \qquad ,
$[R, R-\{1\}, R-\{2\}, R-\{1,2\}]$
(33) if the function f where $f(x)=\frac{x-2}{x-5}$ has a multiplicative inverse if its domain is
$[R, R-\{5\}, R-\{2\}, R-\{2,5\}]$
(34) if $n(x)=\frac{x-1}{x+3}$, then the domain of $n^{-1}(x)$ is
$[R-\{-3\}, R-\{1\}, R-\{1,-3\},\{1,-3\}]$
(35) the common domain of the two fractions $\frac{2}{x-3}, \frac{7}{x-6}$ is \qquad [R, R-\{ $3\}, R-\{6\}, R-\{3,6\}]$
(36) the simplest form of the function:
$n(x)=\frac{x+1}{x-1}+\frac{1-x}{x-1}$ is[zero, $\frac{2}{2 x-2}, \frac{2}{x-1}, \frac{2}{(x-1)^{2}}$]

Probability

Choose the correct answer :-

(1) A coin is thrown twice, then the probability of
not getting head in the second time is [$\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$]
(2) If a coin is tossed once then the probability of appearing tail or head is \qquad [0%, 25 \% , 50\% , 100\%]
(3) If a die is rolled once, A is an event of a prime numbers, B is an odd number then $P(A \cap B)=\ldots\left[\frac{1}{3}, \frac{1}{2}, \frac{1}{6}, \frac{2}{3}\right]$
(4) Probability of impossible event = [$\varnothing, 0,1,-1$]
(5) If the probability of success of Ahmed is 95% then the probability of not success = \qquad [20\%, 10\% , 5\% , 0\%] (6) If a die is tossed once then the probability of an odd number is \qquad $\left[\frac{1}{2}, \frac{1}{3}, 1,3\right]$
(7) If the probability of occuring the event A is 75% then the probability of not occurring the event $A=.\left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right]$ (8) If A and B are events from S where $B \subset A$, then $P(A \cup B)=\ldots \ldots . . \quad[P(A), P(B)]$

