شرح البعد بين نقطتين - هندسة 3 اعدادى - ترم اول

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل

18072014

مُساهمة 

. شرح البعد بين نقطتين - هندسة 3 اعدادى - ترم اول




شرح البعد بين نقطتين - هندسة 3 اعدادى
البعد بين نقطتين
اذا كان أ ( س 1 ، ص 1 ) ، ب ( س 2 ، ص 2 ) فان البعد بين نقطتين أ ، ب = ا ب = طول ا ب =

2 2
= مربع فرق السينات + مربع فرق الصادات = ( س 2 - س 1) + (ص 2 - ص 1 ) = عدد موجب

مثال ( 1) اوجد البعد بين نقطتين ا ( 0 ، 1 ) ، ب ( 3 ، 5 ) الحلــــــــــــــــــــ
2 2 2 2 2 2
أ ب = ( س2- س 1) + (ص 2 - ص 1 ) = ( 3 - 0) + (5 - 1) = 3 + 4
= [9 +16 = [ ۲5 = 5 وحدة طول

مثال ( 2) ) اذا كانت ا ( س ، 2 ) ، ب ( 1 ، 10 ) وكان ا ب =10 وحدات طوليه فاحسب قيمة س الحلـ

2 2 بتربيع 2 2
اب = (1- س) + (10 -2 ) = 10 الطرفين ( 1 - س) + 8 = 100

1 – 2 س + س2 + 64 = 100 س 2 - 2 س - 35 = 0 ( س -7 ) ( س +5 ) = 0
س – 7 =0 س =7 ، س + 5 =0 س = -5 س = 7 أو - 5
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 3) ) اذا كانت م ( س ، 1 ) على بعدين متساويين من النقطتين ، ا ( 4 ، 2 ) ، ب ( 3 ، 3 ) احسب
قيمة س الحلـــــــ
2 2 2 2 أ م = ب م = ( س - 4) + (1 - 2 ) = (س - 3) + (1 - 3 )
2 2 2 2
( س - 4) + 1 = (س - 3) + (- 2 ) س2 – 8 س + 16 + 1 = س2 - 6 س + 9 +4
س2 - 8 س – س2 + 6 س = 13 - 17 - 2 س = - 4 س = 2
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 4) بين موضع كل من النقط أ ( 4، 3 ) ، ب( 4، 0 ) ،جـ ( 5 ، -5 ) ، د( 1، -6 )
بالنسبه للدائرة م ( 1 ، -1 ) وطول نصف قطرها 5سم الحلـــــــــــــــــــــــــــــــــــ
أ م = [(:4 :-:1 Smile:+Sad:3 :+:1 Smile: = [6خح1/+/9/ = [5خح۲/ = 5 أ تقع على الدائرة
ب م = [(:4 :-:1 Smile:+Sad:0 :+:1 Smile := = [9خح/+/1/ = [10 أ تقع داخل الدائرة
جـ م = [(:5 :-:1 Smile:+Sad:-5 :+:1 Smile: = [6خح1/+/16/ = [3۲ أ تقع خارج الدائرة
د م = [(:1 :-:1 Smile:+Sad:-1 :+:6 Smile: = [0/+/25/ = [5خح۲/ = 5 أ تقع على الدائرة
ــــــــــــــــــــــــــــــــــــــــــــ
تدريب ( 1 ) أكمل ماياتى : ـ ( اجـب بنفسك )
1)البعد بين النقطتين ( 3 ، 1 ) ، ( 7 ،4) = 00000 وحدة طول
2) البعد بين النقطتين ( -6 ، 1 ) ، ( 2 ،-5) = 00000 وحدة طول
3) بعد ألنقطه ( -12 ، 9 ) عن نقطه الأصل = 000000 وحدة طول
4) اذا كان أ (0 ، 4) ، ب ( 3 ، 0 ) فان ا ب = 00000 وحدة طول
5 ) المربع ا ب جـ د فيه ا ( 2 ،-3 ) حـ ( -2 ، 0 ) فان مساحته = 0000000 وحدة مربعه
6 ) طول نصف قطر الدائرة التي مركزها ( 5 ، -3 ) وتمر بالنقطة (1 ،0) = 0000000 وحدة طول
ملاحظه (1) لإثبات إن ا ، ب ، جـ على استقامة واحدة
نوجد ا ب ، ب جـ ، جـ ا ويكون البعد الأكبر = مجموع البعدين الآخرين
مثال(5 )اثبت إن النقط الاتيه ا ( 1 ،-1 ) ، ب (-3 ، 3 )، جـ (3 ، -3 ) على استقامة واحد ه الحلــــــــــــــــ
ا ب = ( -3 - 1) 2 + (3- ( - 1 ) ) 2 = ( - 4) 2 + 4 2 = 16 + 16 = 32 = 4 2

ب جـ = (3 - - 3) 2 + (-3 - 3 ) 2 = 6 2 + (- 6 )2 = 36 + 36 = 72 = 6 2

ا جـ = (3 - 1) 2 + (-3 – (-1 ) ) 2 = ( 2) 2 +(- 2 ) 2 = 4 + 4 = 8 = 2 2

ب جـ = ا ب + أ جـ ا ، ب ، جـ على استقامة واحد ه
ــــــــــــــــــــــــــــــــــــــــــــ
ملاحظه (2) لإثبات إن ا ، ب ، جـ هى رؤؤس مثلث نوجد ا ب ، ب جـ ، جـ ا ويكون
مجموع اى بعدين > البعد الثالث لان مجموع طولي اى ضلعين في مثلث اكبر من طول الضلع الثالث
اولا التعرف على نوع المثلث من حيث الزوايا :
1) حاد الزوايا : مربع الضلع الأكبر < مجموع مربعي طولي الضلعين الآخرين
2) قائم الزاوية : مربع الضلع الأكبر = مجموع مربعي طولي الضلعين الآخرين عكس نظريه فيثاغورث
3) منفرج الزاوية: مربع الضلع الأكبر > مجموع مربعي طولي الضلعين الآخرين
ثانيا التعرف على نوع المثلث من حيث الإضلاع :
1)مختلف الإضلاع ا ب ≠ ب جـ ≠ جـ أ
2) متساوي الساقين نوجد ا ب ، ب جـ ، جـ ا ويكون به ضلعين متساوين
3 ) متساوي الإضلاع ا ب = ب جـ = جـ ا
ــــــــــــــــــــــــــــــــــــــــــــ
مثال (6) اثبت إن النقط أ(3 ،10 ) ، ب (8 ، 5) ، جـ (5 ،2 )
هي رؤوس مثلث قائم الزاوية ثم اوجد مساحته الحلـــــــــــــــــ
ا ب = (8 -3) 2 + (5- 10 ) 2 = 25 + 25 = 50 = 5 2

ب جـ = (5 - Cool 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

ا جـ = (5 - 3) 2 + (2 –10 ) 2 = 4 + 64 = = 68

(ا ب) 2 =50 ، ( ب جـ) 2 = 18 ، ( ا جـ ) 2=68 ( ا جـ )2 = ( ا ب ) 2 + ( ب جـ ) 2 مثلث قائم الزاوية

مساحه Δالقائم الزاوية = نصف حاصل ضرب ضلعي القائمة = 5 و0×ا ب × ب جـ = 15 وحدة مربعه
ــــــــــــــــــــــــــــــــــــــــــــ
مثال(7 ) اثبت إن المثلث ا ب جـ حيث أ( 1 ،-2 ) ، ب ( -4 ، 2 )، جـ (1 ، 6 ) متساوي الساقين الحلـــــــــ
ا ب = (-4 -1) 2 + (2+2 ) 2 = 25 + 16 = 41

ب جـ = (-4 - 1) 2 + (6 - 2 ) 2 = 25 + 16 = 41

ا جـ = (1 - 1) 2 + (6 +2 ) 2 = 0 + 64 = = 64 = 8

ا ب = ب جـ المثلث ا ب جـ متساوي الساقين
ملاحظه (3) لإثبات إن ا ، ب ، جـ ، د هي رؤوس او ( ا ب جـ د )
1) متوازي الإضلاع : كل ضلعين متقابلين متساويان في الطول ا ب = حـ د ، ب جـ = د أ
2) معين : إضلاعه الأربع متساوية فى الطول ا ب = حـ د = ب جـ = د أ
3) مستطيل:كل ضلعين متقابلين متساويان في الطول وقطراه متساويان ا ب= حـ د ، ب جـ = د أ ، ا جـ = ب د
4)مربع : إضلاعه الأربع متساوية فى الطول وقطراه متساويان ا ب = حـ د = ب جـ = د أ، ا جـ = ب د
ـــــــــــــــــــــــــــــــــــــــــــ
مثال ( Cool اثبت إن النقط أ ( -5 ، -2 ) ، ب (-2 ، -6) ، جـ (1 ،- 2 ) ، د( - 2،2 ) هى رؤوس معين
الحلـــــــــــــــــــــــــ
أ ب = [ ( -2+ 5)@ :: + (-6 +2 )@ = [9+16: = [25 = 5
ب جـ = [ ( 1+2)@ :: + (-2 +6 )@ = [9+16: = [ 25= 5

جـ د = [ ( -2+ 1)@ :: + (2 +2 )@ = [9+16: = [25 = 5
د أ = [ ( -2+5)@ :: + (2 +2 )@ = [9+16: = [ 25 = 5

ا ب = حـ د = ب جـ = د أ إضلاعه الأربع متساوية فى الطول ا ب جـ د معين
لإيجاد مساحته نوجد أجـ = 6 ،نوجد ب د = 9
ومساحته = حاصل ضرب القطرين = أ جـ × ب د = 6 × 9 = 27 وحدة مربعة
ـــــــــــــــــــــــــــــــــــــــــــ
مثال ( 9) اثبت إن النقط أ (3 ،2 ) ، ب (0 ، 5) ، جـ (-3 ،2 ) ، د ( 0، -1 )
هي رؤوس مربع ثم اوجد مسا حته الحلــــــــــــــــــــــــــــــــــــــــــــــــــــــ

ا ب = (0 -3) 2 + (5- 2 ) 2 = 9 + 9 = 18 = 3 2

ب جـ = (-3 - 0) 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

جـ د = (0 + 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ د = (0 - 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ جـ = (-3 - 3) 2 + (2 - 2 ) 2 = 36 + 0 = = 36 = 6

ب دـ = (0 - 0) 2 + (-1 –5 ) 2 = 0 + 36 = = 36 = 6

ا ب = حـ د = ب جـ = د أ اضلاعه الاربع متساويه فى الطول ، ا جـ = ب د وقطراه متساويان
ا ب جـ د مربع

مساحه المربع = طول الضلع × نفسه = ا ب × ا ب = 3 2 × 3 2 = 18 وحدة مربعه ـــــــــــــــــــــــــــــــــــــــــــ
إلى كل محبي الرياضيات
أقد لكم الدرس الأول فى الهندسة التحليلية للصف الثالث الاعدادى
مكتوب بالورد حتى تستطيع إن تأخذ منه ما يتناسب معك
وأتمنى ان يكون وهذا العمل خالص لوجه الله تعالى
سيد ابو عطيه محب لتراب مص

تمارين على البعد بين نقطتين
س1 ا كمل الجدول الاتى : -
م نقطة أ نقطة ب أ ب
1 (س1 ،ص 1) (س2 ، ص 2 ) 00000000000
2 ( 1 ، 3) ( 5 ، 6) 0000000
3 ( 6 ، 0) ( 0 ، Cool 000000
4 ( 2 ، 3 ) ( - ، -1) 0000000
5 ( 3 ، 5) ( 0 ، 1) 000000
6 ( 4 ، -3) ( 0 ، 0) 000000
7 ( - 1 ، -6) ( 4 ، 6 ) 000000
8 ( 1 ، 0 ) ( 0 ، 1 ) 000000
س 2 أكمل ماياتى : -
1)البعد بين النقطتين ( 2 ، 1 ) ، ( 9 ،2) = 00000 وحدة طول
2 ) ألنقطه أ ( 4 ، -3) تبعد عن نقطة الأصل و مسافة قد رها 000 وحدة طول
3) اذا كانت ا ( 2 ، 5) ب ، ( -1 ، 1 ) فان ا ب = 000000000 وحدة طول
4) طول ألقطعه المستقيمة الواصلة بين النقطتين ( -2 ، 3) ، ( 2، 0) = 00000 وحدة طول
5) طول نصف قطر الدائرة المارة بالنقطة ( - 4 ، 3 ) ومركزها نقطه الأصل= 00000 وحدة طول
6) النقطه 0000 [ (1،1) ، ( 1،2) ، (0،2) ، ( 3،-1)] التى تبعد عن نقطة الأصل 2 وحدة طول

س 3 اذا كانت ا ( س ، 3 ) ، ب ( 2 ، - 1 ) وكان ا ب =5 وحدات طوليه فاحسب قيمة س
س4 اذا كان البعد بين النقطتين ( 4 ، ك ) ، ( 6 ، 1 ) يساوى 2 [ 5 وحدات طوليه فاحسب قيمة ك

س5 اثبت إن النقط الاتيه ا ( 1 ،4 ) ، ب ( 3 ، -2 )، جـ (-3 ، 16) على استقامة واحد ه

س6اثبت إن النقط ا ( -3 ، 2 ) ، ب ( 0 ، 5 ) ، حـ ( 3 ، 2 ) تنتمي إلى الدائرة التي مركزها م ( 0 ، 2 )

س7 اثبت إن المثلث ا ب جـ حيث ا ( 3 ،-2 ) ، ب ( 2 ، 5 )، جـ (-4 ، -3 ) متساوي الساقين واحسب مساحته

س 8 اثبت إن النقط أ (3 ،-2 ) ، ب ( - 1 ، 2) ، جـ ( 6 ، 1 ) هي رؤوس مثلث قائم الزاوية واحسب مساحته

س 9 اذا كانت أ ( 0 ،1 ) ، ب (4 ، 5) ، جـ (1 ،8 ) ، د ( -3،4 ) اثبت ا ن ا ب جـ د مستطيل

س 10 اثبت إن النقط أ (3 ، 3 ) ، ب (5 ، 9) ، جـ (-1 ،7 ) ، د ( - 3،1) هي رؤوس معين

س 11 اثبت إن النقط أ (3 ،3 ) ، ب (0 ، 3) ، جـ (0،0 ) ، د ( 3، 0 ) هي رؤوس مربع

س 12 في مستوى احداثى متعامد مثل النقاط ا ( -3 ،-2) ، ب (5، 2) ، جـ ( 3، 6)، د (- 1، 4)
ارسم ا ب جـ د ثم تحقق انه شبه منحرف

اذا كان أ ( س 1 ، ص 1 ) ، ب ( س 2 ، ص 2 ) فان البعد بين نقطتين أ ، ب = ا ب = طول ا ب =

2 2
= مربع فرق السينات + مربع فرق الصادات = ( س 2 - س 1) + (ص 2 - ص 1 ) = عدد موجب
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 1) اوجد البعد بين نقطتين ا ( 0 ، 1 ) ، ب ( 3 ، 5 ) الحلــــــــــــــــــــ
2 2 2 2 2 2
أ ب = ( س2- س 1) + (ص 2 - ص 1 ) = ( 3 - 0) + (5 - 1) = 3 + 4
= [9 +16 = [ ۲5 = 5 وحدة طول
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 2) ) اذا كانت ا ( س ، 2 ) ، ب ( 1 ، 10 ) وكان ا ب =10 وحدات طوليه فاحسب قيمة س الحلـ

2 2 بتربيع 2 2
اب = (1- س) + (10 -2 ) = 10 الطرفين ( 1 - س) + 8 = 100

1 – 2 س + س2 + 64 = 100 س 2 - 2 س - 35 = 0 ( س -7 ) ( س +5 ) = 0
س – 7 =0 س =7 ، س + 5 =0 س = -5 س = 7 أو - 5
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 3) ) اذا كانت م ( س ، 1 ) على بعدين متساويين من النقطتين ، ا ( 4 ، 2 ) ، ب ( 3 ، 3 ) احسب
قيمة س الحلـــــــ
2 2 2 2 أ م = ب م = ( س - 4) + (1 - 2 ) = (س - 3) + (1 - 3 )
2 2 2 2
( س - 4) + 1 = (س - 3) + (- 2 ) س2 – 8 س + 16 + 1 = س2 - 6 س + 9 +4
س2 - 8 س – س2 + 6 س = 13 - 17 - 2 س = - 4 س = 2
ــــــــــــــــــــــــــــــــــــــــــــ
مثال ( 4) بين موضع كل من النقط أ ( 4، 3 ) ، ب( 4، 0 ) ،جـ ( 5 ، -5 ) ، د( 1، -6 )
بالنسبه للدائرة م ( 1 ، -1 ) وطول نصف قطرها 5سم الحلـــــــــــــــــــــــــــــــــــ
أ م = [(:4 :-:1 Smile:+Sad:3 :+:1 Smile: = [6خح1/+/9/ = [5خح۲/ = 5 أ تقع على الدائرة
ب م = [(:4 :-:1 Smile:+Sad:0 :+:1 Smile := = [9خح/+/1/ = [10 أ تقع داخل الدائرة
جـ م = [(:5 :-:1 Smile:+Sad:-5 :+:1 Smile: = [6خح1/+/16/ = [3۲ أ تقع خارج الدائرة
د م = [(:1 :-:1 Smile:+Sad:-1 :+:6 Smile: = [0/+/25/ = [5خح۲/ = 5 أ تقع على الدائرة
ــــــــــــــــــــــــــــــــــــــــــــ
تدريب ( 1 ) أكمل ماياتى : ـ ( اجـب بنفسك )
1)البعد بين النقطتين ( 3 ، 1 ) ، ( 7 ،4) = 00000 وحدة طول
2) البعد بين النقطتين ( -6 ، 1 ) ، ( 2 ،-5) = 00000 وحدة طول
3) بعد ألنقطه ( -12 ، 9 ) عن نقطه الأصل = 000000 وحدة طول
4) اذا كان أ (0 ، 4) ، ب ( 3 ، 0 ) فان ا ب = 00000 وحدة طول
5 ) المربع ا ب جـ د فيه ا ( 2 ،-3 ) حـ ( -2 ، 0 ) فان مساحته = 0000000 وحدة مربعه
6 ) طول نصف قطر الدائرة التي مركزها ( 5 ، -3 ) وتمر بالنقطة (1 ،0) = 0000000 وحدة طول
ملاحظه (1) لإثبات إن ا ، ب ، جـ على استقامة واحدة
نوجد ا ب ، ب جـ ، جـ ا ويكون البعد الأكبر = مجموع البعدين الآخرين
مثال(5 )اثبت إن النقط الاتيه ا ( 1 ،-1 ) ، ب (-3 ، 3 )، جـ (3 ، -3 ) على استقامة واحد ه الحلــــــــــــــــ
ا ب = ( -3 - 1) 2 + (3- ( - 1 ) ) 2 = ( - 4) 2 + 4 2 = 16 + 16 = 32 = 4 2

ب جـ = (3 - - 3) 2 + (-3 - 3 ) 2 = 6 2 + (- 6 )2 = 36 + 36 = 72 = 6 2

ا جـ = (3 - 1) 2 + (-3 – (-1 ) ) 2 = ( 2) 2 +(- 2 ) 2 = 4 + 4 = 8 = 2 2

ب جـ = ا ب + أ جـ ا ، ب ، جـ على استقامة واحد ه
ــــــــــــــــــــــــــــــــــــــــــــ
ملاحظه (2) لإثبات إن ا ، ب ، جـ هى رؤؤس مثلث نوجد ا ب ، ب جـ ، جـ ا ويكون
مجموع اى بعدين > البعد الثالث لان مجموع طولي اى ضلعين في مثلث اكبر من طول الضلع الثالث
اولا التعرف على نوع المثلث من حيث الزوايا :
1) حاد الزوايا : مربع الضلع الأكبر < مجموع مربعي طولي الضلعين الآخرين
2) قائم الزاوية : مربع الضلع الأكبر = مجموع مربعي طولي الضلعين الآخرين عكس نظريه فيثاغورث
3) منفرج الزاوية: مربع الضلع الأكبر > مجموع مربعي طولي الضلعين الآخرين
ثانيا التعرف على نوع المثلث من حيث الإضلاع :
1)مختلف الإضلاع ا ب ≠ ب جـ ≠ جـ أ
2) متساوي الساقين نوجد ا ب ، ب جـ ، جـ ا ويكون به ضلعين متساوين
3 ) متساوي الإضلاع ا ب = ب جـ = جـ ا
ــــــــــــــــــــــــــــــــــــــــــــ
مثال (6) اثبت إن النقط أ(3 ،10 ) ، ب (8 ، 5) ، جـ (5 ،2 )
هي رؤوس مثلث قائم الزاوية ثم اوجد مساحته الحلـــــــــــــــــ
ا ب = (8 -3) 2 + (5- 10 ) 2 = 25 + 25 = 50 = 5 2

ب جـ = (5 - Cool 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

ا جـ = (5 - 3) 2 + (2 –10 ) 2 = 4 + 64 = = 68

(ا ب) 2 =50 ، ( ب جـ) 2 = 18 ، ( ا جـ ) 2=68 ( ا جـ )2 = ( ا ب ) 2 + ( ب جـ ) 2 مثلث قائم الزاوية

مساحه Δالقائم الزاوية = نصف حاصل ضرب ضلعي القائمة = 5 و0×ا ب × ب جـ = 15 وحدة مربعه
ــــــــــــــــــــــــــــــــــــــــــــ
مثال(7 ) اثبت إن المثلث ا ب جـ حيث أ( 1 ،-2 ) ، ب ( -4 ، 2 )، جـ (1 ، 6 ) متساوي الساقين الحلـــــــــ
ا ب = (-4 -1) 2 + (2+2 ) 2 = 25 + 16 = 41

ب جـ = (-4 - 1) 2 + (6 - 2 ) 2 = 25 + 16 = 41

ا جـ = (1 - 1) 2 + (6 +2 ) 2 = 0 + 64 = = 64 = 8

ا ب = ب جـ المثلث ا ب جـ متساوي الساقين
ملاحظه (3) لإثبات إن ا ، ب ، جـ ، د هي رؤوس او ( ا ب جـ د )
1) متوازي الإضلاع : كل ضلعين متقابلين متساويان في الطول ا ب = حـ د ، ب جـ = د أ
2) معين : إضلاعه الأربع متساوية فى الطول ا ب = حـ د = ب جـ = د أ
3) مستطيل:كل ضلعين متقابلين متساويان في الطول وقطراه متساويان ا ب= حـ د ، ب جـ = د أ ، ا جـ = ب د
4)مربع : إضلاعه الأربع متساوية فى الطول وقطراه متساويان ا ب = حـ د = ب جـ = د أ، ا جـ = ب د
ـــــــــــــــــــــــــــــــــــــــــــ
مثال ( Cool اثبت إن النقط أ ( -5 ، -2 ) ، ب (-2 ، -6) ، جـ (1 ،- 2 ) ، د( - 2،2 ) هى رؤوس معين
الحلـــــــــــــــــــــــــ
أ ب = [ ( -2+ 5)@ :: + (-6 +2 )@ = [9+16: = [25 = 5
ب جـ = [ ( 1+2)@ :: + (-2 +6 )@ = [9+16: = [ 25= 5

جـ د = [ ( -2+ 1)@ :: + (2 +2 )@ = [9+16: = [25 = 5
د أ = [ ( -2+5)@ :: + (2 +2 )@ = [9+16: = [ 25 = 5

ا ب = حـ د = ب جـ = د أ إضلاعه الأربع متساوية فى الطول ا ب جـ د معين
لإيجاد مساحته نوجد أجـ = 6 ،نوجد ب د = 9
ومساحته = حاصل ضرب القطرين = أ جـ × ب د = 6 × 9 = 27 وحدة مربعة
ـــــــــــــــــــــــــــــــــــــــــــ
مثال ( 9) اثبت إن النقط أ (3 ،2 ) ، ب (0 ، 5) ، جـ (-3 ،2 ) ، د ( 0، -1 )
هي رؤوس مربع ثم اوجد مسا حته الحلــــــــــــــــــــــــــــــــــــــــــــــــــــــ

ا ب = (0 -3) 2 + (5- 2 ) 2 = 9 + 9 = 18 = 3 2

ب جـ = (-3 - 0) 2 + (2 - 5 ) 2 = 9 + 9 = = 18 = 3 2

جـ د = (0 + 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ د = (0 - 3) 2 + (-1 –2 ) 2 = 9 + 9 = = 18 = 3 2

أ جـ = (-3 - 3) 2 + (2 - 2 ) 2 = 36 + 0 = = 36 = 6

ب دـ = (0 - 0) 2 + (-1 –5 ) 2 = 0 + 36 = = 36 = 6

ا ب = حـ د = ب جـ = د أ اضلاعه الاربع متساويه فى الطول ، ا جـ = ب د وقطراه متساويان
ا ب جـ د مربع

مساحه المربع = طول الضلع × نفسه = ا ب × ا ب = 3 2 × 3 2 = 18 وحدة مربعه ـــــــــــــــــــــــــــــــــــــــــــ
إلى كل محبي الرياضيات
أقد لكم الدرس الأول فى الهندسة التحليلية للصف الثالث الاعدادى
مكتوب بالورد حتى تستطيع إن تأخذ منه ما يتناسب معك
وأتمنى ان يكون وهذا العمل خالص لوجه الله تعالى
سيد ابو عطيه محب لتراب مص

تمارين على البعد بين نقطتين
س1 ا كمل الجدول الاتى : -
م نقطة أ نقطة ب أ ب
1 (س1 ،ص 1) (س2 ، ص 2 ) 00000000000
2 ( 1 ، 3) ( 5 ، 6) 0000000
3 ( 6 ، 0) ( 0 ، Cool 000000
4 ( 2 ، 3 ) ( - ، -1) 0000000
5 ( 3 ، 5) ( 0 ، 1) 000000
6 ( 4 ، -3) ( 0 ، 0) 000000
7 ( - 1 ، -6) ( 4 ، 6 ) 000000
8 ( 1 ، 0 ) ( 0 ، 1 ) 000000

س 2 أكمل ماياتى : -
1)البعد بين النقطتين ( 2 ، 1 ) ، ( 9 ،2) = 00000 وحدة طول
2 ) ألنقطه أ ( 4 ، -3) تبعد عن نقطة الأصل و مسافة قد رها 000 وحدة طول
3) اذا كانت ا ( 2 ، 5) ب ، ( -1 ، 1 ) فان ا ب = 000000000 وحدة طول
4) طول ألقطعه المستقيمة الواصلة بين النقطتين ( -2 ، 3) ، ( 2، 0) = 00000 وحدة طول
5) طول نصف قطر الدائرة المارة بالنقطة ( - 4 ، 3 ) ومركزها نقطه الأصل= 00000 وحدة طول
6) النقطه 0000 [ (1،1) ، ( 1،2) ، (0،2) ، ( 3،-1)] التى تبعد عن نقطة الأصل 2 وحدة طول

س 3 اذا كانت ا ( س ، 3 ) ، ب ( 2 ، - 1 ) وكان ا ب =5 وحدات طوليه فاحسب قيمة س
س4 اذا كان البعد بين النقطتين ( 4 ، ك ) ، ( 6 ، 1 ) يساوى 2 [ 5 وحدات طوليه فاحسب قيمة ك

س5 اثبت إن النقط الاتيه ا ( 1 ،4 ) ، ب ( 3 ، -2 )، جـ (-3 ، 16) على استقامة واحد ه

س6اثبت إن النقط ا ( -3 ، 2 ) ، ب ( 0 ، 5 ) ، حـ ( 3 ، 2 ) تنتمي إلى الدائرة التي مركزها م ( 0 ، 2 )

س7 اثبت إن المثلث ا ب جـ حيث ا ( 3 ،-2 ) ، ب ( 2 ، 5 )، جـ (-4 ، -3 ) متساوي الساقين واحسب مساحته

س 8 اثبت إن النقط أ (3 ،-2 ) ، ب ( - 1 ، 2) ، جـ ( 6 ، 1 ) هي رؤوس مثلث قائم الزاوية واحسب مساحته

س 9 اذا كانت أ ( 0 ،1 ) ، ب (4 ، 5) ، جـ (1 ،8 ) ، د ( -3،4 ) اثبت ا ن ا ب جـ د مستطيل

س 10 اثبت إن النقط أ (3 ، 3 ) ، ب (5 ، 9) ، جـ (-1 ،7 ) ، د ( - 3،1) هي رؤوس معين

س 11 اثبت إن النقط أ (3 ،3 ) ، ب (0 ، 3) ، جـ (0،0 ) ، د ( 3، 0 ) هي رؤوس مربع

س 12 في مستوى احداثى متعامد مثل النقاط ا ( -3 ،-2) ، ب (5، 2) ، جـ ( 3، 6)، د (- 1، 4)
ارسم ا ب جـ د ثم تحقق انه شبه منحرف

العلم والايمان


الرجوع الى أعلى الصفحة اذهب الى الأسفل

مُشاطرة هذه المقالة على: Excite BookmarksDiggRedditDel.icio.usGoogleLiveSlashdotNetscapeTechnoratiStumbleUponNewsvineFurlYahooSmarking

شرح البعد بين نقطتين - هندسة 3 اعدادى - ترم اول :: تعاليق

مُساهمة في 20/07/14, 08:17 pm  elmarsafe

شكراً جزيلاً

الرجوع الى أعلى الصفحة اذهب الى الأسفل

مُساهمة في 05/11/14, 12:55 am  ابن شنواى

مذكرة الأول فى الهندسة للصف الثالث الاعدادى ترم أول رووووعة
حمل من هنا
أو من هنا

الرجوع الى أعلى الصفحة اذهب الى الأسفل

مُساهمة في 09/08/15, 11:42 pm  قطرة ماء

جزاكم الله كل خير

الرجوع الى أعلى الصفحة اذهب الى الأسفل

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة


 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى