

Model Exam (1)

Question 1:

- Answer the following:

a- $65.3814+63.4027=$ \qquad \simeq \qquad (to the nearest $\frac{1}{1000}$)
b- $53.27-2.1=$ \qquad \simeq \qquad (to the nearest tenth)
c- $(3.425+1.07) \div 2.8=$ \qquad \simeq \qquad (to the nearest hundredth)
d- $9.568 \div 9 \frac{\mathbf{1}}{\mathbf{5}}=$ \qquad \simeq \qquad (to the nearest whole number)
e- \qquad $\div 9=4.5$
f- The chord of a circle is a line segment that connects \qquad
g- 2.9 ton = \qquad kg
h- A box contain 24 lamps, 3 lamps are defective. A lamp has been randomly selected, the probability of getting a functional lamp = \qquad
i- If $X=\{2,3\}, Y=\{3,5\}$, then $X \cap Y=$ \qquad
j- 254 hours \simeq \qquad days

Question 2:

A) The area of a rectangle is $9.43 \mathrm{~cm}^{2}$ and its width is 2.45 cm . find its length and approximate it to the nearest hundredth of centimeter.

B) Compare:

a- $0.46 \div 4.6$	\square	0.01
b- 17.17×1.7	\square	39
c- $53.7 \div 3.5$	\square	$5.37 \div 0.35$
d- $845 \div 4.9$	\square	$(84.5 \div 49) \times 0.1$

Question 3:

A) A spinner is divided into 4 equal sections.
a- What is the probability of spinning the letter B ?
b- Spin the spinner 400 times. What is the predicted number of getting letter A ?
B) Draw a circle whose centre is M and radius is 2.5 cm . then draw its diameter $\overline{\mathrm{AB}}$ and draw its chord $\overline{\mathrm{AC}}$ of length $\mathbf{3 ~ c m}$. Draw $\overline{\mathrm{BC}}$ then find its length.

Question 4:
 A) 1

A) If $U=\{1,2,3,4,5,6\}, X=\{2,3,5\}$ and $Y=\{3,4,5\}$

Represent the sets by Venn diagram. Then write each of the following by listing method:
a) $X \cup Y$
b) $X \cap Y$
c) $X-Y$
d) X^{\prime}
B) Find the product of 58.62×35.2 and approximate it to the nearest hundredth.

Question 5:

- Choose the correct answer:
a- The number of subsets for the set $\{5\}$ is \qquad
b- If M is a circle whose diameter is 8 cm where $M A=7 \mathrm{~cm}$ then the point A is located \qquad (inside - outside - on) the circle.
c- $654 \div 76=6.54 \div . . .$.

$$
(76-0.76-7.6)
$$

d- If $X \subset Y$ then $X \cap Y=$ \qquad

$$
(X-Y-\varnothing-U)
$$

e- \varnothing \qquad \{0\}

Question 6:

A) Draw the isosceles triangle $A B C$ in which $B C=4 \mathrm{~cm}$, and $A B=A C=6 \mathrm{~cm}$ Then, draw perpendicular segments from their vertices to their three sides.
B) The following table lists the results of a survey applied on 100 spectators of T.V

Program	Arabic films	Foreign films	Series	News	Football matches
Number of spectators	19	20	15	10	36

A spectator has been randomly selected. Find the probability of selecting a spectator prefers:
a- Football matches b-foreign films
c- series
d- news

Question 1:

- Find the following:
a- $729.72-122.7435=$ \qquad \simeq \qquad (to the nearest hundredth)
b- $1.623 \div 0.152=$ \qquad \simeq \qquad (to the nearest tenth)
c- $984.45+73.2=$ \qquad \simeq \qquad (to the nearest unit)
d-1.775 $\times 0.15=$ \qquad \simeq \qquad
e- $4 \frac{1}{2} \div 0.5=$ \qquad
f- $X \in\{2,5\} \cap\{3,5\}$, then $X=$ \qquad
g- $8.56 \mathrm{~m}=$ \qquad km

Question 2:

A) A card has been randomly drawn out of 10 cards numbered from 1 to 10 Find the probability of getting:
a- An odd number
b- A prime number
c- An even number greater than 6
B) Draw the triangle $A B C$ in which $A B=7 \mathrm{~cm}, B C=C A=6 \mathrm{~cm}$. then, draw the line segment from point C that is perpendicular to $\overline{\mathrm{AB}}$ and find its length.

Question 3:

A) Complete:
a- If $\{1, X\}=\{2, Y\}$, then $X=$ \qquad , $\mathrm{Y}=$ \qquad
b- The longest chord in a circle is called \qquad
c- The probability of failing a student is $\frac{2}{15}$, The probability success = \qquad
d- 72 days \simeq......... weeks
e- $\{2, X\} \cap\{3,7\}=\{3\}$, then $X=$ \qquad
f- The difference between $\frac{9}{16}$ and 0.5734 is
B) The area of a rectangle is $\mathbf{1 0 . 2 5}$ square meters, and its length is $\mathbf{4 . 1}$ meters. Find its width and perimeter.

Question 4:

A) Look at the opposite Venn diagram and find the following sets using the listing method:
a) $X \cup Y$
b) $X \cap Y$
c) $X-Y$
d) Y^{\prime}
e) $(X \cup Y)^{\prime}$

B) Find the number that if multiplied by 0.37 , then the result is $\mathbf{1 7 . 8 9 3 2}$

C) Choose the correct answer:

a- The number of altitudes in any triangle $=$ (1-2-3)
b- $\{1,7\}$...... $\{0,1,2,3,4, \ldots\}$ $(\in-\notin-\subset-\not \subset)$
c- $12 \frac{1}{2} \times \frac{4}{5}=$ ($10-100-50$)
d- If $\overline{\mathbf{A B}}, \overline{\mathbf{A C}}$ are two chord in a circle, then $\overline{\mathbf{B C}}$ is a(chord - diameter radius) in the same circle.
e- $5698.65 \div 100=$ \qquad ($569865-56.9865-5.69865$)
f- $X-X=$.........
(\varnothing - zero - $\{0\}$ - $\{1\}$)

Question 5:

A) Rolling a regular number cube. What is the probability of getting an even number and not divisible by 3 ?
B) Put (\checkmark) for the true sentence and (x) for the false one:
a- The quotient of dividing 265.88 by $2.6588=100$
b- The length of the diameter of a circle $>$ the length of any which doesn't pass through its center
c- $8 \in\{5,7\}$
d- $439.71 \times 1000=439710$
e- The line segments drawn from the vertices of the acute triangle perpendicular to the opposite sides intersect at one point inside the triangle.

Math

Question 6:

A) Draw a circle whose center is N and diameter is 6 cm . then draw the diameter $\overline{\mathbf{A B}}$ and the chord $\overline{\mathbf{A C}}$ in the circle. Draw $\overline{\mathbf{B C}}$. Use the protractor to measure $\angle \mathrm{ACB}$, then draw $\overline{\mathbf{C D}} \perp \overline{\mathrm{AB}}$ that intersects it at D and the circle at E , then choose the correct answer:
a- The triangle $A B C$ is
(right triangle - acute triangle - obtuse triangle)
b- $\overline{\mathbf{C E}}$ is in the circle (chord - diameter - radius)
c- The intersection point of the perpendicular line segments drawn from the vertices of the triangle $A B C$ to the opposite sides is ...

$$
(C-D-E)
$$

B) Divide 375 by 0.5 then add $5 \frac{1}{4}$ to the quotient.

Model Exam (3)

Question 1:

- Find the following:
a- $75.32489 \times 10=$ \qquad \simeq \qquad (to the nearest thousandth)
b- $12.46 \div 0.517=$ \qquad \simeq \qquad (to the nearest tenth)
c- $700.14+55.009=$ \qquad \simeq \qquad (to the nearest unit)
d- $7.52 \div(14.73-11.58)=$ \qquad \simeq (to the nearest $\frac{1}{100}$)
e- $2 \frac{1}{8} \div 0.125=$ \qquad
f- If $4 \in\{2, X, 7\}$, then $X=$ \qquad
\mathbf{g} - The midpoint of any diameter in a circle is of the circle.
h- A card has been drawn out of 5 cards containing the numbers:

The probability of selecting a number that the sum of its two digits is $9=$

Question 2:

 determine the types of the triangle according to the measures of its angles, then draw the perpendicular segment from X to $\overline{\mathrm{YZ}}$ and measure its length.

Math $5^{\text {th }}$ primary
B) A spinner is divided into 6 equal sections.
a- What's the probability of spinning on any section?
b- Spinning the spinner 60 times. How many times are predicted to get the letter (A) as an outcome?

Question 3:

A) Rearrange the following fractions descendingly: $\frac{1}{2}$,
$0.8, \frac{1}{4}, 0.3$
B) The side length of a square is $\mathbf{5 . 0 6}$ meters.

Find its area approximating it to the nearest hundredth.
C) If $X=\{3,4,5\}, Y=\{2,3,4\}$

Place the suitable symbol \in or \notin or \subset or $\not \subset$ in the blanks.
a- 2 X
d- $\{3,5\} \ldots . . . X \cap Y$
b- $\{3,2\}$...... $X \cup Y$
e- 5 $X-Y$
c- \emptyset...... Y
f- $\{2,3,4\} \ldots . . . X$

Question 4:

A) The following table lists the number of 120 volunteers in $\mathbf{3}$ groups to make uniforms for cleaners.

Group	Design	Printing	Distribution
Number of volunteers	30	30	60

A volunteer has been randomly selected. What is the probability to be one of the printing group?
B) A truck can hold 125 boxes of oranges at a time. How many times are needed to deliver 4375 boxes by that truck?

Question 5:

A) Choose the correct answer from the parentheses:
a- If $\{2,5,7\}=\{5, A, 2\}$ then $A=\ldots \ldots$.
(2-5-7-0)
b- If A, B belong to the circle M where $M \in \overline{\mathbf{A B}}$ then $\overline{\mathbf{A B}}$ is called
(chord - diameter - radius) in the circle.
c- $78.26 \div 10 \ldots \ldots . .7 .826 \times 10$
(> or $=$ or $<$)
$d-\{5\}-\{1,2,5\}=$ \qquad

$$
(\{5\}-\{1,2\}-\varnothing-\{1,2,5\})
$$

e- If a $\in X$ then a \qquad X
f- In the opposite figure, If the length of each radius in the three circles is 3 cm , then the perimeter of the triangle MLN = (6-9-18) cm

B) Draw a circle whose center is M and radius $\mathbf{2 c m}$ then draw two radii $\overline{\mathbf{M X}}$, $\overline{\text { MY }}$ and the included angle between them measures 60° then draw $\overline{\mathbf{X Y}}$ and find the length of $\overline{X Y}$.

Model Exam (5)

Answer the following questions:

1. Complete:
[a] \varnothing \qquad $\{a, b\}$
[b] It is \qquad that the sun rises from west.
[c] As throwing a fair die once, then the probability of appearing a number less than 3 is \qquad
[d] The altitudes of the right-angled triangle intersect at \qquad

22 Choose the correct answer:
[a] $63.594 \simeq 63.6$ (to the nearest \qquad ...)
(0.1 or 0.01 or 0.001 or 10)
[b] $3 \frac{1}{2} \div \frac{7}{12}=$
$\left(6\right.$ or $\frac{18}{2}$ or $\frac{50}{12}$ or 4)
[c] 3 \qquad $\{303,13\}$
$(\epsilon$ or \notin or \subset or $\not \subset)$
[d] The chord which passes through the centre of the circle is called \qquad
(adiameter or a radius or atangent or a side)

[b] From the opposite Venn diagram, write the following sets :
(1) \bar{X}
(2) $X \cup Y$
(3) $X \cap Y$
(4) $)^{*}-X$

$5^{\text {the }}$ primary

Answers Model Exam (1)

Question 1:
a- $128.7841 \simeq 128.784$
b- $51.17 \simeq 51.2$
c- $4.495 \div 2.8=44.95 \div 28=1.6053 \simeq 1.61$
d- $9.568 \div 9.2=95.68 \div 92=1.04 \simeq 1$
e- $4.5 \times 9=40.5$
f- between any two points on the circle
g- 2.9 ton $\times 1000=2900 \mathrm{~kg}$
h- Functional lamps $=24-3=21$, so the probability of getting a functional $\operatorname{lamp}=\frac{21}{24}=\frac{7}{8}$
i- $X \cap Y=\{3\}$
j- $254 \div 24=10.583 \simeq 11$ days

Question 2:

$$
\begin{aligned}
& \text { A) Area }=\mathrm{L} \times \mathrm{W} \\
& \text { Length }=\text { area } \div \text { width } \\
& \\
& =9.43 \div 2.45=943 \div 245=3.8489 \simeq 3.85 \mathrm{~cm}
\end{aligned}
$$

B)

a- 0.1	$>$	0.01
b- 29.189	$<$	39
c-	$=$	
d- 172.4489	$>$	0.17244

Question 3:

A) a- $\frac{1}{4}$
b- First the probability of getting letter $A=\frac{1}{4}$, then the predicted number of getting letter $A=400 \times \frac{1}{4}=100$ times

Model Exam (3)

Question 1:

$$
\begin{aligned}
& \text { a- } 753.2489 \simeq 753.249 \\
& \text { b- } 12460 \div 517=24.1005 \simeq 24.1 \\
& \text { c- } 755.149 \simeq 755 \\
& \text { d }-7.52 \div 3.15=2.3873 \simeq 2.39 \\
& \text { e }-\frac{17}{8} \div \frac{125}{1000}=\frac{17}{8} \times \frac{1200^{8}}{125}=17 \\
& \text { f- } X=4 \\
& \text { g- Center } \\
& \text { h- } \frac{2}{5}
\end{aligned}
$$

Question 2:

A) Obtuse angled triangle Length $=2.5 \mathrm{~cm}$
B)

a- $\frac{1}{6}$
b- The probability of getting letter $A=\frac{1}{6}$
So, the number of times are predicted to get letter $A=60 \times \frac{1}{6}$
$=10$ times

